
Hypothetical Asteroid Impact Exercise

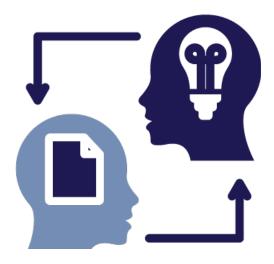
Panel 1b: Acting on results from an information-gathering space mission

Point of Contact: Terik Daly terik.daly@jhuapl.edu

Panel Objectives

Awareness Raising

Raise awareness about the nature of asteroid threats and challenges related to preparing for an effective international response


International Views

Hear international viewpoints about asteroid impact threats and potential ways of responding to them

Decision Making

Discuss ways of communicating with decision makers about a potential asteroid impact and options for responding to it

Perception

Expand perspectives of planetary defense specialists about how non-specialists perceive asteroid impact threats

Meet the Presenters

Kelly Fast

NASA Headquarters & International Asteroid Warning Network

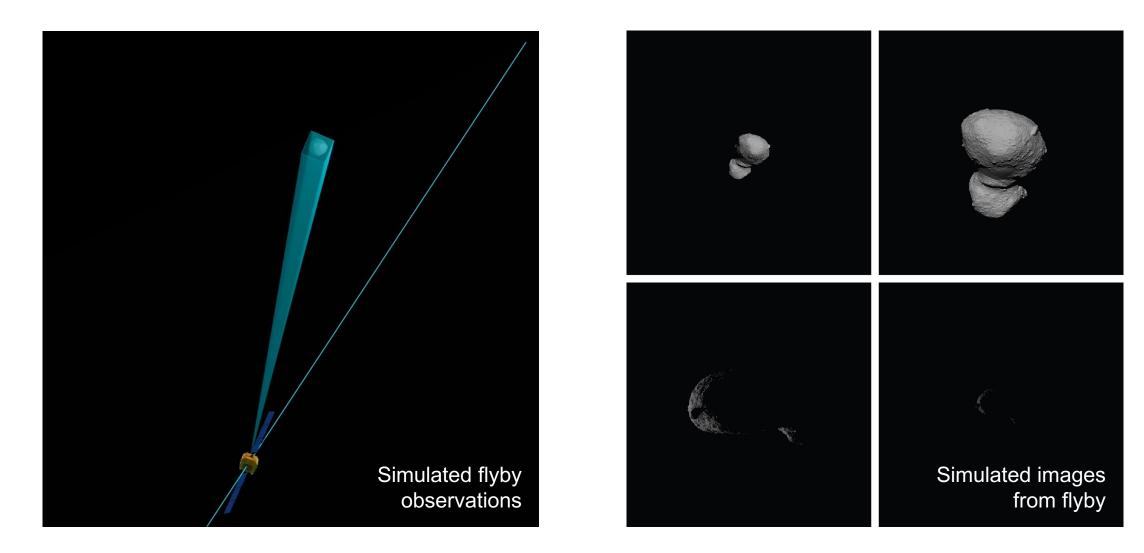
Nancy Chabot

Johns Hopkins University Applied Physics Laboratory

Lorien Wheeler NASA Ames Asteroid Threat Assessment Project

Detlef Koschny

Technical University of Munich & Space Mission Planning Advisory Group


It is now April 2028.

13 years until a definite Earth impact

The international community implemented a fast flyby mission

Key uncertainties reduced to improve plans for Earth impact prevention missions & disaster management

It is April 2028. 13 years until a definite Earth impact

INTERNATIONAL ASTEROID WARNING NETWORK (IAWN)

POTENTIAL ASTEROID IMPACT NOTIFICATION – HYPOTHETICAL SIMULATION

- Date: 28 April 2028
- From: International Asteroid Warning Network (IAWN) Point of Contact: IAWN Coordinating Officer for the IAWN Steering Committee [email]
- To: Chair, Space Mission Planning Advisory Group (SMPAG); United Nations Office of Outer Space Affairs
- Title: Updated potential for impact of Near-Earth Asteroid 2024 PDC25 using data from reconnaissance spacecraft flyby

Simulated Impact Threat Scenario: Update After Flyby Reconnaissance

Notification by IAWN

Kelly Fast, NASA IAWN Coordinating Officer

9th IAA Planetary Defense Conference

Scenario date: April 2028

Updated IAWN Notification

EXERCISE

EXERCISE

EXER	CISE	EXERCISE	EXERCISE	EXERCISE
INTER	NATIONAL ASTERO	D WARNING NETWORK (IAWN)		 Asteroid si spacecraft
POTE	NTIAL ASTEROID IM	PACT NOTIFICATION – HYPOTHETICAL SIMULATION		ratio of arc
Date:	28 April 2028			 Asteroid m the reconn
From	International Aste	roid Warning Network (IAWN)		mass range
-		AWN Coordinating Officer for the IAWN Steering Committ	tee [email]	 Future obs
To:		on Planning Advisory Group (SMPAG); fice of Outer Space Affairs		starting in . 2025 PDC f
Title:		for impact of Near-Earth Asteroid 2024 PDC25 using data	from	data would
	reconnaissance sp	acecraft flyby		observatio
				 Technical in
	Impact Probability	100% as calculated by NASA JPL CNEOS and ESA NEOCC		notification community
	Impact Date	24 April 2041	LP - Color	community
	Impact Risk Region	Extends 470 km across Angola and the Democratic Repu Congo	iblic of the	This notification is i
	Asteroid Size	140-160 m (460-520 ft) in size		criteria and thresho
	Expected Damage	Regional blast damage, likely extending 100–120 km (60 the impact location, but possibly as far as 130 km (80 mi released most likely to be in the range 60–105 Mt, but p range 45–160 Mt.	i). Energy	and Technical Subc threshold for issuin rough size estimate asteroid observers
	When will there be new information?	Telescopic data available starting in July 2029 will not ad to what is known of 2024 PDC25 from the reconnaissanc flyby. Additional spacecraft data would improve the imp predictions. The asteroid will not come within range for observations until 2041.	ce spacecraft pact risk	*The United Natior satisfaction the est Mission Planning A to the near-Earth o Outer Space in 201
	Technical Information	https://cneos.jpl.nasa.gov/pd/cs/pdc25/		The Committee in it
A reco astero expec	bid's position and ph ted damage. Impact Probabilit	aft flew by asteroid 2024 PDC25 on 12 April 2028 and the c ysical properties were used to improve the predicted impa y: There is a 100% probability that near-Earth asteroid 202	act location and the 24 PDC25 will impact	impact be discovere to all Member State disseminates inform work carried out by Advisory Group (SW Graphics
	Object Studies (CM Impact Risk Regio of 2024 PDC25 wa and narrow the po	2041 as independently calculated by the NASA JPL Center (4EOS) and the ESA Near-Earth Objects Coordination Centre with Edata collected by the reconnaissance spacecraft on s used by CNEOS and NEOCC to improve the asteroid's pre- tential impact locations on the African continent. The tential impact locations on the African continent. The process Angola and the Den aphic 2 below).	e (NEOCC). 1 the precise position edicted trajectory tion of possible	 Hello-centr Impact risk Impact risk

EXERCISE EXERCISE

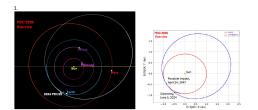
EXERCISE

EXERCISE

Asteroid size: 140–160 meters (460–520 feet) in size from images taken as the reconnaissance pacecraft flew by 2024 PDC25. The asteroid has an elongated shape, with an estimated axis atio of around 2:1 (*i.e.*, the asteroid is around twice as long as it is wide).

EXERCISE

- Asteroid mass and expected damage: The potential mass range calculated from data taken by the reconnaissance spacecraft is $2.0-7.0 \times 10^9$ kg, most likely between $2.8-4.1 \times 10^9$ kg. The mass range was used to update the expected damage that is detailed above.
- Future observability and updated information: Further telescopic observations will be possible starting in July 2029, but they will not add significantly to what is currently known about 2025 PDC from the data gathered by the filty recomaissance space-craft. Additional spacecraft data would improve impact risk predictions. The asteroid will not come within range for radar observations until 2041.
- Technical information: The latest technical information concerning this and any future IAWN notifications about asteroid 2024 PDC25 is made available by IAWN to the worldwide community at <u>https://cneos.ibi.nasa.avv/bd/cs/bdc25/</u>


is notification is issued by the International Asteroid Warning Network (AWNI)⁺ in accordance with teria and thresholds for impact response actions in report AJAC.105/C.1/2017/CBP.25 to the Scientific of Technical Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space. The reshold for issuing warnings of possible impact effects is a probability of impact greater than 1% and a ugh size estimated to be greater than 10 meters (33 Seet). AWN is a worldwide collaboration of terial observes and modelers that was recommended by the United Nations. <u>https://www.net</u>

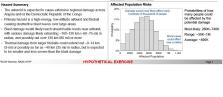
le United Nations General Assembly in its resolution <u>70/82 of 9 December 2015</u> noted with lightion the establishment of the International Asteroid Warning Network (IAWN) and the Space sion Planning Advisory Group (SMNAQ) to implement recommendations for an international response he near-Earth abject impact threat that were endorsed by the Committee on the Peaceful Uses of ter Space in 2013 (*IASS20, pars. 149*).

he Committee in its annual reports (e.g. <u>A/726/20, para, 119)</u> notes that should a credible threat of npact be discovered by the IAWN, available information would be provided by IAWN and disseminated all Member States through the Office for Outer Space Affairs. The Office for Outer Space Affairs isseminates information pursuant to <u>General Assembly resolution 78/72, paragraph 13</u>, concerning the ork carried out by the International Asteroid Warning Network (IAWN) and the Space Mission Planning divory Group (MAPG) and in its capacity as the permanent secretariat of SMPAG.

Helio-centric orbit diagram relative to Earth orbit
 Impact risk region maps
 Impact risk summary chart

EXERCISE

EXERCISE


EXERCISE

EXERCISE

EXERCISE

EXERCISE

EXERCISE

EXERCISE

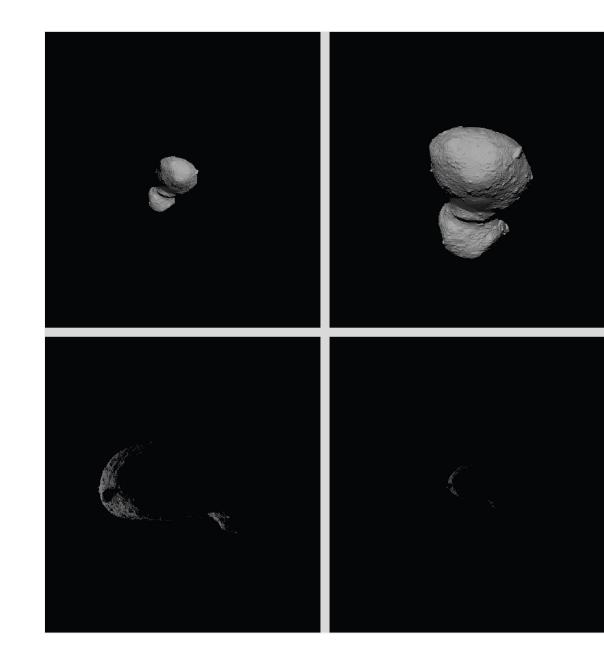
EXERCISE

Notification shared with UNOOSA and SMPAG

EXERCISE

https://iawn.net/

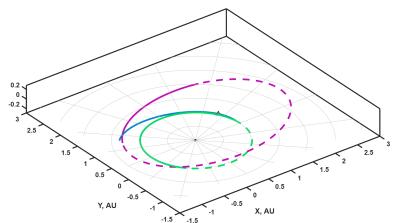
EXERCISE


IAWN Notification: Key Points

Impact Probability	100% as calculated by NASA JPL CNEOS and ESA NEOCC
Impact Date	24 April 2041
Impact Risk Corridor	Extends 470 km across Angola and the Democratic Republic of the Congo
Asteroid Size	140–160 m (460–520 ft) in size
Expected Damage Level If Impact Occurs	Regional blast damage, likely extending 100–120 km (60–75 mi) from the impact location, but possibly as far as 130 km (80 mi). Energy released most likely to be in the range 60–105 Mt, but possibly in the range 45–160 Mt.
When Will New Information Be Available?	Telescopic data available starting in July 2029 will not add significantly to what is known of 2024 PDC25 from the reconnaissance spacecraft flyby. Additional spacecraft data would improve the impact risk predictions. The asteroid will not come within range for radar observations until 2041.
Technical Information	https://cneos.jpl.nasa.gov/pd/cs/pdc25/

Information Gathered by Flyby Mission

Nancy Chabot Johns Hopkins University Applied Physics Laboratory

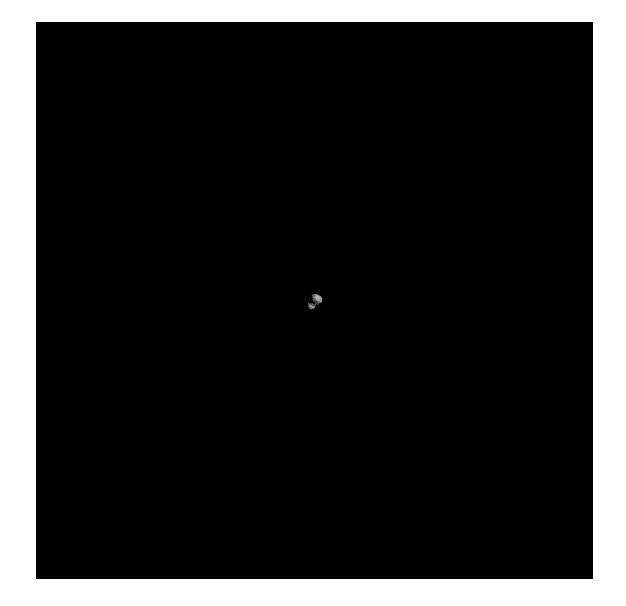

Flyby Details


Launch: 29 September 2027

- Falcon Heavy
- 2 km/s of on-board propellant

Flyby: 12 April 2028

- Flyby speed: 8 km/s
- Approach solar phase angle: 30°
- Close approach distance: 100 km
- Solar distance: 1.48 AU
- Earth distance: 1.75 AU

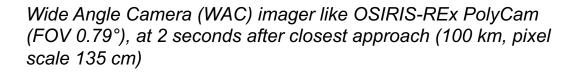


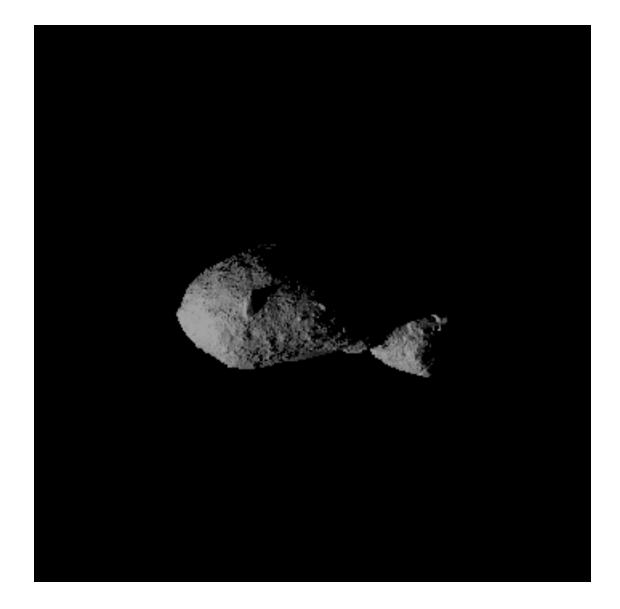
Flyby Imaging Acquired

- Approach to 23 s: NAC images
- 2 s prior: WAC image
- 2 s after: WAC image
- Departure after 23 s: NAC images


Narrow Angle Camera (NAC) imager like DART DRACO (FOV 0.29°), from 6 minutes to 23 seconds prior to closest approach (2905 km to 209 km; 50 cm pixel scale at 209 km)

Flyby Imaging Acquired


- Approach to 23 s: NAC images
- 2 s prior: WAC image
- 2 s after: WAC image
- Departure after 23 s: NAC images


Wide Angle Camera (WAC) imager like OSIRIS-REx PolyCam (FOV 0.79°), at 2 seconds prior to closest approach (100 km, pixel scale 135 cm)

Flyby Imaging Acquired

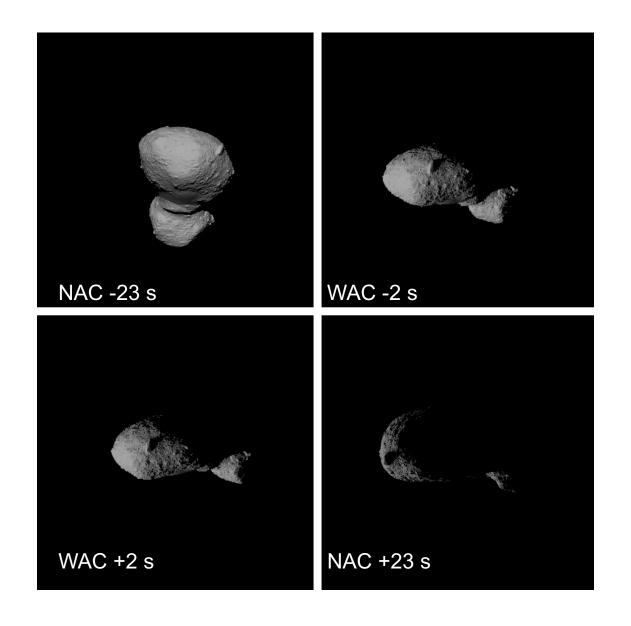
- Approach to 23 s: NAC images
- 2 s prior: WAC image
- 2 s after: WAC image
- Departure after 23 s: NAC images


Flyby Imaging Acquired

- Approach to 23 s: NAC images
- 2 s prior: WAC image
- 2 s after: WAC image
- Departure after 23 s: NAC images

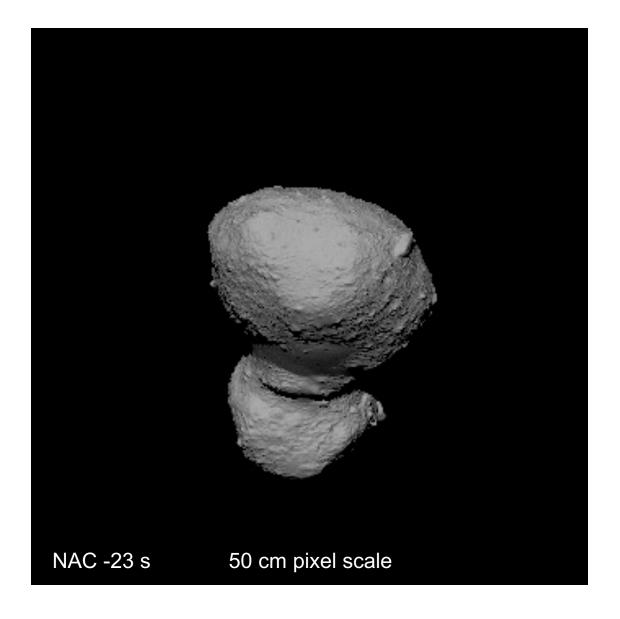
Asteroid Properties

- Rotation period: 3 hrs.
- Thermal inertia: 200 ± 20 (SI units)
- Spin axis: RA, Dec (253°, 74°) ± 3°
- Taxonomy: S-type
- Yarkovsky semimajor axis drift: 586 ± 195 m/yr


Narrow Angle Camera (NAC) imager like DART DRACO (FOV 0.29°), from 23 seconds to 6 minutes after closest approach (209 km to 2905 km; 50 cm pixel scale at 209 km)

Flyby Mission Results

Multiple imaging geometries constrain the asteroid's size, shape, and surface characteristics.


- Size: 150 m ± 2.5 m (1σ) effective spherical diameter
- Shape: two-lobed, ~240 m long by ~120 m wide by ~120 m high

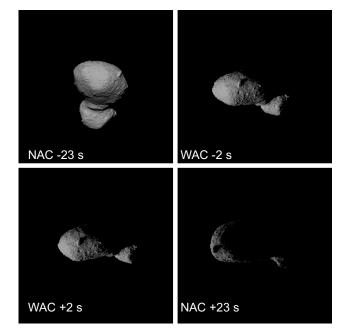
Flyby Mission Results


Multiple imaging geometries constrain the asteroid's size, shape, and surface characteristics.

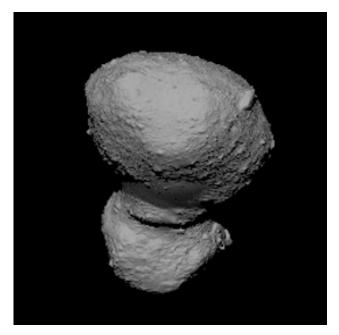
- **Size:** 150 m ± 2.5 m (1σ) effective spherical diameter
- Shape: two-lobed, ~240 m long by ~120 m wide by ~120 m high
- **Surface:** boulder-covered, rocky S-type surface

Flyby Mission Results

Orbital tracking from the flyby, together with ground-based astrometry, constrain the region of possible impact to a 470-km corridor that crosses the border between Angola & the Democratic Republic of the Congo.


PDC 2025 Exercise

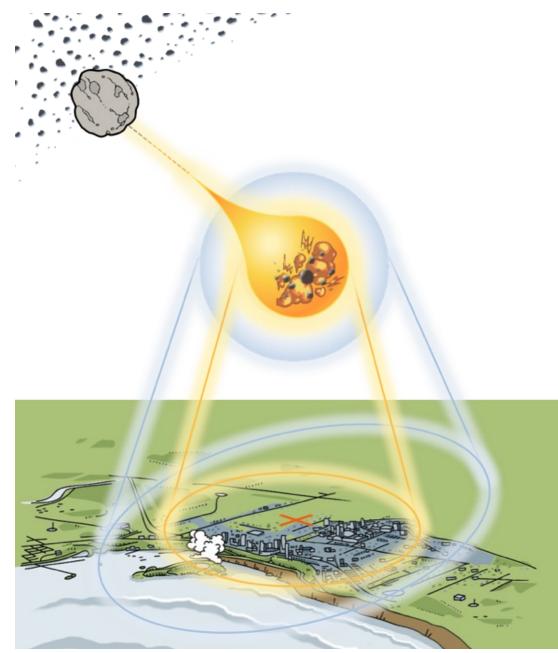
Flyby Mission Results


Impact Location

Impact corridor spans 470 km, crossing Angola and the Democratic Republic of the Congo

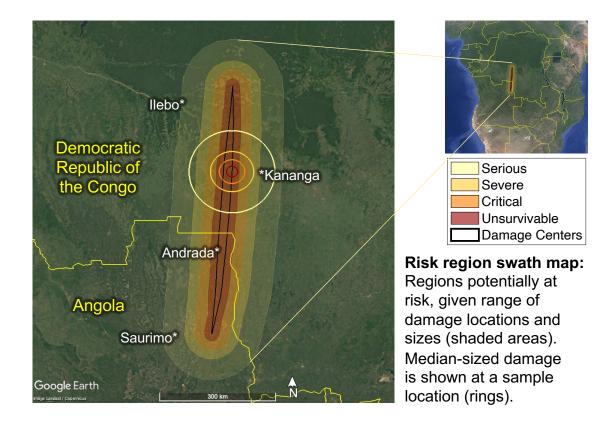
Asteroid Size

 $150 \text{ m} \pm 2.5 \text{ m} (1\sigma)$ effective spherical diameter


Asteroid Characteristics

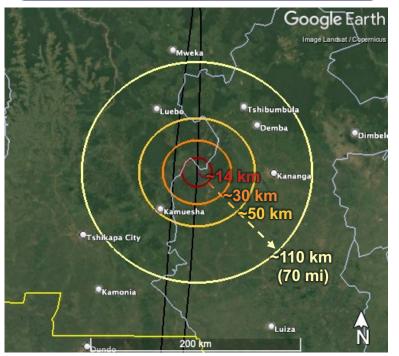
Two-lobed shape (~240 m long, ~120 m wide, ~120 m high). Rocky, bouldercovered S-type surface.

Updated Impact Risk Assessment


Lorien Wheeler Asteroid Threat Assessment Project NASA Ames Research Center

Impact Hazard Summary

April 2028: 100% chance of Earth impact by an asteroid ~150 m in diameter with ~45–160 Mt of energy


- 100% chance of damage to populated regions among possible impact locations
- Primary hazard is a destructive blast wave from a high-energy, low-altitude airburst
- Damage severities could reach unsurvivable levels near airburst
- Serious damage (causing structural damage, shattered windows) is likely to span multiple cities and provinces

Impact would cause extensive blast damage across a large region in Angola and/or DRC, potentially affecting ~30K–1M people

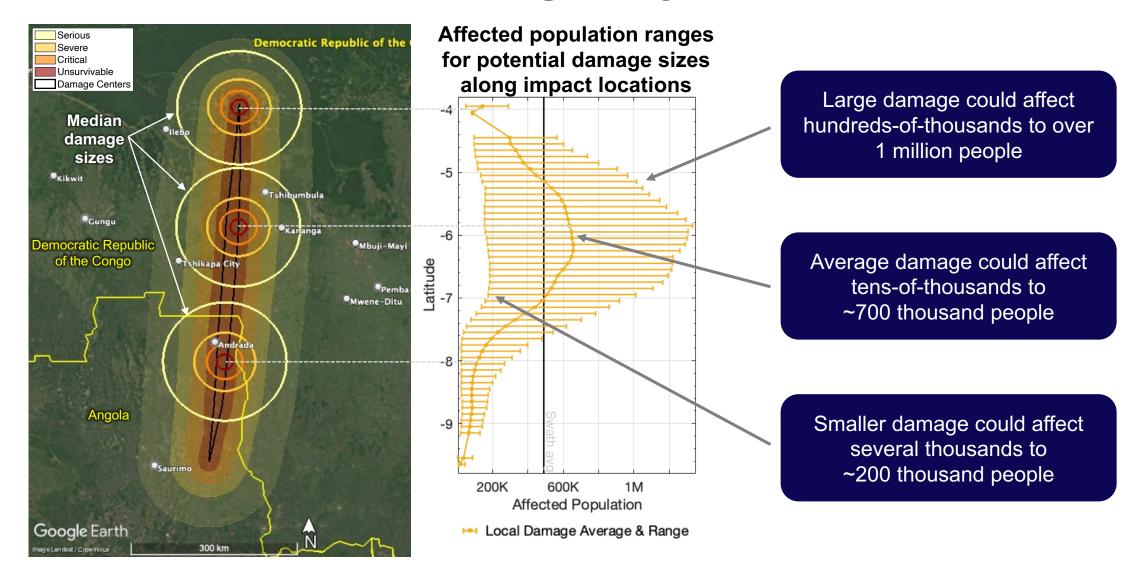
Potential Ground Damage Sizes & Severities

Example near Kananga, DRC

Damage areas would most likely extend over ~100 km (>60 miles) in radius

Median (50th%) Damage

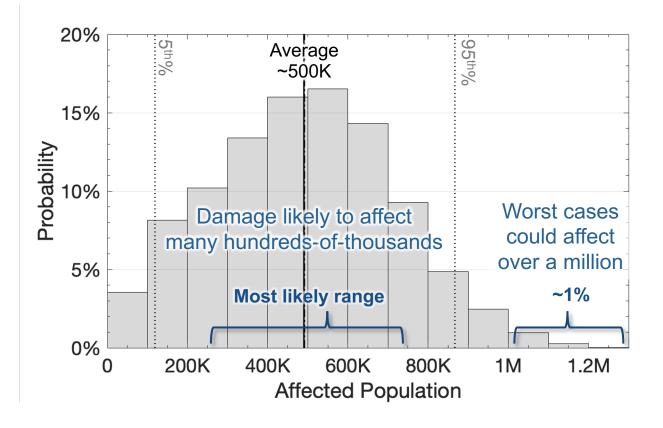
Large damage areas could extend out over ~130 km (~80 miles) or more in radius



Large (95th%) Damage

Damage severities could reach unsurvivable levels near the blast, extending to larger areas of structural damage, fires, and shattered windows

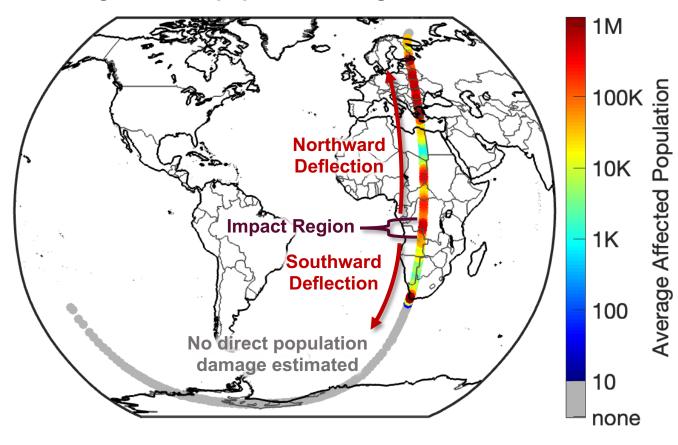
Damage Level Description		
Serious	Windows shatter, some structure damage	
Severe	Widespread structure damage	
Critical	Residential structures collapse	
Unsurvivable	Devastation, structures flattened or burned	


Affected Population Ranges by Location

Affected Population Risks

Damage probabilities among modeled impact sizes and locations; Earth impact probability is 100%

Likelihood of the impact affecting at least this many people

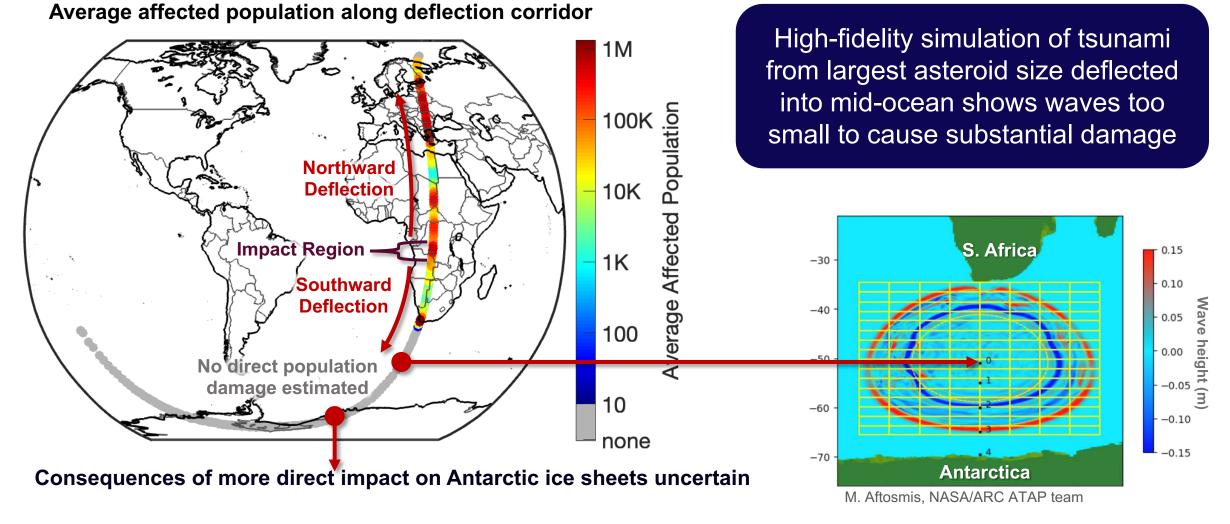

Damage likely to affect ~250K–750K people and potentially over 1M people ~500K people affected on average

100% chance of large damage to populated regions

Population Risks for Asteroid Deflection

Gradual deflection of the asteroid changes the number and location of people at risk of damage if Earth impact should occur

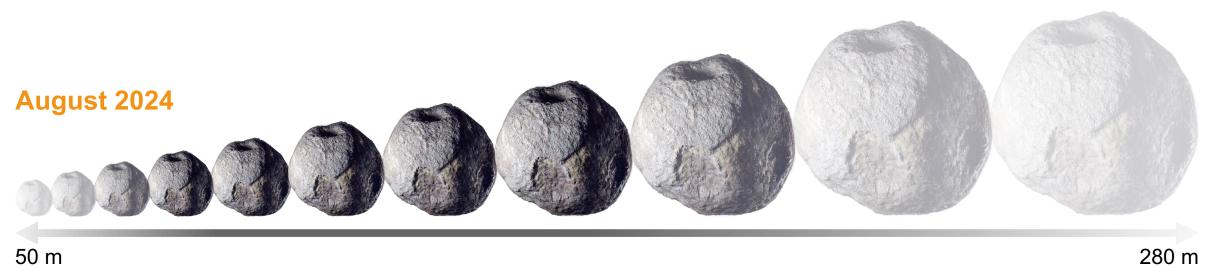
Average affected population along deflection corridor



Deflecting the asteroid **northward** would cross **~85%** of population within the corridor (~80M–120M people)

Deflecting the asteroid **southward** would cross ~15% of population within the corridor (~15M–25M people)

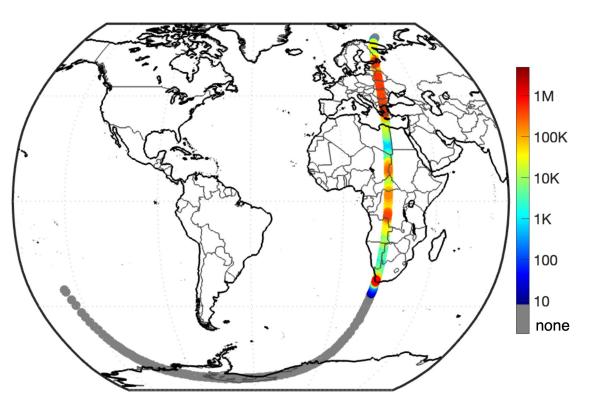
Tsunami Risk from Deflection into the Southern Ocean


No direct population damage or significant tsunami expected for impacts into the Southern Ocean along most of the ocean-crossing deflection corridor

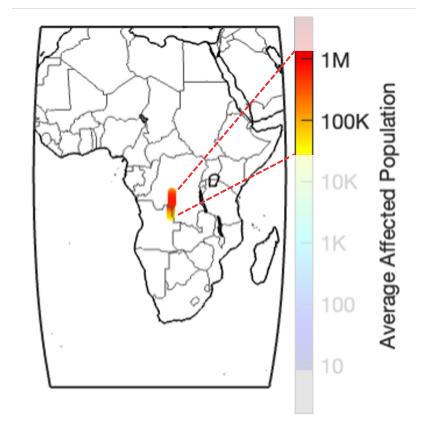
Asteroid Size Knowledge

50 m

April 2028 (post flyby)



140–160 m


Average Affected Population

August 2024 (1.6% chance of impact) Small chance of damage; large uncertainties

April 2028 (post flyby, impact assured) Certain damage to populated regions

It is now April 2028.

13 years to definite Earth impact

SMPAG

Recommendations for Further Space Mission Options

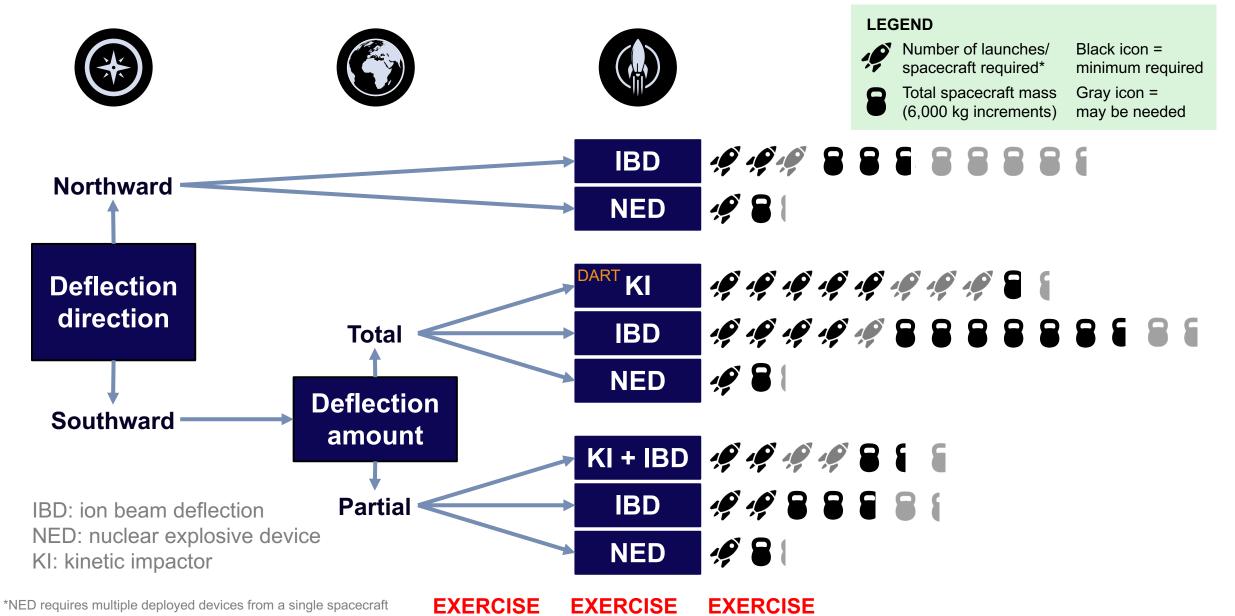
Detlef Koschny Chair, Space Mission Planning Advisory Group (SMPAG)

9th IAA Planetary Defense Conference

Scenario date: April 2028

Recommendations to Prevent Earth Impact

Decide whether the deflection will be northward or southward.



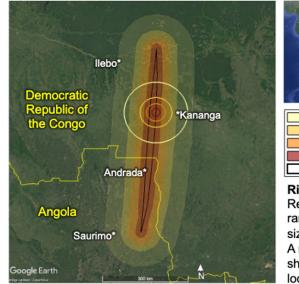
Deflection amount (southward only) If southward deflection is selected, decide whether a partial deflection option is considered safe/acceptable, then decide whether partial deflection or total deflection will be the mission goal.

Deflection method Select a deflection mission type—kinetic impact (KI), ion beam deflection (IBD), or nuclear explosive device (NED)—complete its development, and deploy it.

Asteroid Deflection Options Flowchart

It is April 2028. 13 years until a definite Earth impact

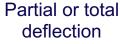
Affected people



Asteroid properties

Size: 140–160 m, most likely 148–153 m Composition: Rocky

Impact risk corridor


Risk region swath map: Regions potentially at risk, given range of damage locations and sizes (shaded areas). A median-sized damage area is shown at sample high-population location (rings).

SMPAG Recommendations

Deflection direction

Earth impact prevention method

EXERCISE

EXERCISE EXERCISE

Participant Discussion

What did you learn during the panel?

What in the panelists' comments aligned with your expectations? What surprised you?

Did your perspective on planetary defense change in any way after listening to the panelists? If so, how?

What are the implications of the panelists' comments for your own work?

What concrete actions could be taken to make progress on the issues raised by the panelists?

If you could ask the panelists to elaborate on one specific point, what would it be?

Share Your Perspectives

Which factor do you think decision makers should prioritize when weighing deflection options?

- a) Minimizing the number of people potentially placed in harm's way along the deflection corridor
- b) Maximizing the chance of preventing an Earth impact by moving the asteroid a shorter distance
- c) Choosing a method that has been demonstrated to deflect an asteroid in a flight test

