NASA/TM-20250000891

PDC25 Epoch 2 Risk Assessment Dashboard Content Key

Ashley Coates NASA Ames Research Center, Moffett Field, California

Lorien Wheeler NASA Ames Research Center, Moffett Field, California

Jessie Dotson NASA Ames Research Center, Moffett Field, California

Michael Aftosmis NASA Ames Research Center, Moffett Field, California

Eric Stern NASA Ames Research Center, Moffett Field, California

Donovan Mathias NASA Ames Research Center, Moffett Field, California

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest,
 e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

• Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u> NASA/TM-20250000891

PDC25 Epoch 2 Risk Assessment Dashboard Content Key

Ashley Coates NASA Ames Research Center, Moffett Field, California

Lorien Wheeler NASA Ames Research Center, Moffett Field, California

Jessie Dotson NASA Ames Research Center, Moffett Field, California

Michael Aftosmis NASA Ames Research Center, Moffett Field, California

Eric Stern NASA Ames Research Center, Moffett Field, California

Donovan Mathias NASA Ames Research Center, Moffett Field, California

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California

January 2025

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 050 NASA Langley Research Center Hampton, VA 23681-2199

1. Introduction

As part of the 9th IAA Planetary Defense Conference (PDC 2025), a hypothetical asteroid impact exercise is conducted. This exercise assesses a realistic but **fictious hypothetical scenario**, not a real asteroid threat. Information on the hypothetical exercise and related data products can be found on the CNEOS PDC25 Scenario Website at https://cneos.jpl.nasa.gov/pd/cs/pdc25/.

Results of the Probabilistic Asteroid Impact Risk (PAIR) assessment performed for the PDC25 Hypothetical Asteroid Impact Exercise are presented in several forms, including an Asteroid Impact Risk Assessment Interactive Dashboard. This document outlines the contents of the Dashboard .HTML file generated for Epoch 2 of the exercise. Content descriptions in this document include sample screenshots showing key features highlighted with large red arrows. A copy of each dashboard page is included in the Appendix.

2. Interactive Dashboard Overview and Contents

The interactive dashboard includes six pages: Summary, Asteroid Properties, Damages, Affected Population, Locations, and Zoomable Maps. Users can navigate between pages using the tabs along the top of the dashboard (Figure 1). Individual pages may have subtabs and drop-down menus to navigate to additional plots and data.

Figure 1: Use tabs across top of Dashboard to navigate between pages

Some pages have more content than what fits on a single browser screen at one time, and users may need to scroll down to see all content on a given dashboard page. The top and bottom of each page is marked with a red HYPOTHETICAL EXERCISE banner and can be used as an indicator that the bottom of the page has been reached (Figure 2).

Figure 2: Red HYPOTHETICAL EXERCISE banners bound information on a given page

2.1 Summary Page

The Summary page includes an impact risk summary quadrant chart highlighting basic information about the hypothetical asteroid known on the assessment date, plus information about the impact location, potential hazards, and the affected population estimates. Most likely ranges are listed for diameter and energy under Asteroid Characterization. Here, most likely is defined as the 68% Highest Probability Density Interval (HPDI 68%). Each of these sections are discussed further in the following pages.

2.2 Asteroid Properties Page

The Asteroid Properties page includes graphical statistics about the asteroid properties, entry parameters, and modeling parameters used to model the scenario. Users can navigate through each set of plots using the similarly labeled subtabs located directly below the Asteroid Properties title (Figure 3).

Summary A	steroid Properties	Damages	Affected Population	n Locations	Zoomable Maps		
HYPOTHETICAL EXERCISE							
Asteroid Properties							
Asteroid Propertie	Asteroid Properties Entry Parameters Modeling Parameters Data						
Diameter			Mass		Impac	ct Energy	
0.16	— Mez	an: 150 0.12	-	Mean: 3970M	0.12	— Mean: 89.4	

Figure 3: Use subtabs to navigate through Asteroid Properties subpages

Statistical data is also provided under the Data subtab including various percentile values, the mean, etc. Users should scroll horizontally to see all data. The data can also be exported to a CSV file using the Export dropdown on the upper right of the Data table (Figure 4) or queried via SQL. Note that the ranges and probabilities represent the cases modeled for this hypothetical scenario (5000 property samples x5000 impact points = 25 million cases modeled) to capture uncertainty in various properties and parameters, not the absolute theoretical limits.

Summary	Asteroid Properties	Damages Affected I	Population	Locations Z	oomable Maps	
		НҮРОТН		ISE		
Asteroid Properties						
Asteroid Prope	erties Entry Parame	ters Modeling Parame	ters Data			
10 rows	17 columns 170 cells	S			Run SQL	Query Export ~
Stat	Diameter	[m] Mass [kg]	Impa	ct Energy	H-Magnitude [·	Albedo [-]
1. Mean	150	3.97e+09	89		21.6	0.19
2 Min Mode	led 141	2.01e+09	45		20.6	0.03

Figure 4: Use Export dropdown to download data as a CSV file

2.3 Damages Page

The Damages page includes several subtabs taking users to information about the types, sizes, and severities of potential damage from Earth-impacting cases (Figure 5). Additionally, a color-coded table appears above each Damages subpage describing the expected local blast and/or local thermal damage and criteria at each of four severity levels. It is assumed that 10% of the population is affected at the Serious severity level, 30% at the Severe level, 60% at the Critical level, and 100% at the Unsurvivable damage severity level.

Summa	ry Ast	teroid Properties	Damages	Affected Population	Locat	ions	Zoomable Maps	
		_		HYPOTHETICAL EXE	ERCISE			
				Damages				
		Serious		Severe		C	ritical	Unsurvivable
Potential	Blast	Shattered windov some structure dan	vs, nage	Widespread structure damage		Most r structur	residential res collapse	Complete devastation
Effects	Thermal	2nd degree burr	IS	3rd degree burns		Clothir	ng ignition	Structure ignition
Onitonia	Blast	1 psi		2 psi		4	4 psi	10 psi
Criteria	Thermal	0.25 MJ/m^2		0.42 MJ/m^2		0.84	MJ/m^2	1.20 MJ/m^2
Population Affected	י	10%		30%		(60%	100%
Hazard C)ccurence	Local Damage Se	verity	Local Damage Size	Data			

Figure 5: Use subtabs to navigate through Damages subpages. Use color-coded table as reference for expected local blast and thermal damages at different damage severity levels

Expanding the information from the Summary page, the Hazard Occurrence subtab includes information on both hazard occurrence and hazard dominance. Hazard occurrence numbers represent the chance that each given hazard may occur. Because a single impact event can cause multiple hazards, the summation of the occurrence probabilities may exceed 100%. Damage dominance bars represent the probability that a given damage type is the primary source of population damage. In this case, one dominant damage is determined for each case modeled, and the summation should be 100%.

The Local Damage Severity subtab contains information on the damage severity of local hazards (blast and thermal) at different locations. Users can navigate between two perspectives – Safety or Risk – using the dropdown menus for each hazard type (Figure 6). The Safety figures highlight where a given severity or better is experienced (i.e., if a person stands at *x* distance there is *y* probability that they will see at most *z* severity damage), whereas the Risk figures highlight where a given severity or worse is experienced (i.e., if a person stands at *x* distance there is a *y* probability that they will see at least *z* severity damage).

Figure 6: Use dropdown to choose perspective for blast and thermal damage severity results

The Local Damage Size subtab provides information on the size of damage regions resulting from local hazards (blast and thermal). Plots highlight the probability that the damage radius for a given hazard and severity level is within a specified range. Dropdowns for each hazard type (Figure 7) allow users to navigate between results at different damage severity levels.

Figure 7: Use dropdown to choose a severity level for blast and thermal damage size results

Statistical data is again provided under the Data subtab, including various percentile values, the mean, etc. Users should scroll horizontally to see all data. Damage radius values are determined by the larger of either the blast or thermal radii at a given severity level. The data can also be exported to a CSV file using the Export dropdown on the upper right of the Data table (Figure 8) or queried via SQL. Note that the ranges and probabilities represent the cases modeled for this hypothetical scenario (5000 property samples x 5000 impact points = 25 million cases modeled) to capture uncertainty in various properties and parameters, not the absolute theoretical limits.

Summar	y As	steroid Properties	Damages	Affected Populatio	n	Locations	Zoomable Ma	aps		
				HYPOTHETICAL	EXERC	ISE				
				Damage	es					
		Serious		Severe		С	ritical		Unsurviv	able
Potential	Blast	Shattered wind some structure of	dows, damage	Widespread structu damage	re	Most structur	residential res collapse	Co	mplete dev	astation
Effects	Therma	I 2nd degree b	urns	3rd degree burns		Clothi	ng ignition	S	Structure ig	nition
Critoria	Blast	1 psi		2 psi			4 psi		10 psi	
Criteria	Therma	l 0.25 MJ/m ⁴	^2	0.42 MJ/m^2		0.84	MJ/m^2		1.20 MJ/r	n^:2
Population Affected	Ì	10%		30%		1	60%		100%	
Hazard O	ccurenc	e Local Damage	Severity	Local Damage Size	Dat	а				
10 rows	s 15 (columns 150 cell	S					Run SQL	Query	Export ~
Stat	t	Serious d	lamag	Severe damage	Critic	cal damage	Unsurviv	able d	Blast r	ad 1psi [
1. Mean	n	104.5		53.7	32.3		14.1		104.5	
2 Min M	Nodeled	54.9		35.0	19.2		0.0		54.9	

Figure 8: Use Export dropdown to download data as a CSV file

2.4 Affected Population Page

The Affected Population page has several subtabs taking users to information about the number of people affected by the overall damage and from each potential hazard – local blast and thermal ground damage, tsunami, and/or global effects (Figure 9). Each subtab has two figures, one showing the probability that the number of affected people falls within a given range, and another showing the likelihood that a given number of people or more are affected. The large call out numbers in the top banner (Figure 9) give the probabilities that affected population could exceed various thresholds if impact occurs (e.g., the probability that the damage could affect at least ten thousand people, at least one hundred thousand people, etc.). These values correspond to the right-hand plot on the Total subtab.

Figure 9: Use subtabs to navigate through Affected Population subpages. Use highlighted statistics as a quick look at the total probabilities that a given number of people or more are affected among Earth-impacting cases

Statistical data is again provided under the Data subtab, including various percentile values, the mean, etc. Users should scroll horizontally to see all data. Local population numbers represent the population within the damage area, not the affected number of people. The affected population is determined by multiplying the populations within each damage severity ring by the relative damage severity factor shown in the damage level key (10, 30, 60, 100%). The data can also be exported to a CSV file using the Export dropdown on the upper right of the Data table (Figure 10) or queried via SQL. Note that the ranges and probabilities represent the cases modeled for this hypothetical scenario (5000 property samples x 5000 impact points = 25 million cases modeled) to capture uncertainty in various properties and parameters, not the absolute theoretical limits.

100.0%	100.0%	100.0%	96.4%	1.38%	0.00%
10 rows 12 colum	nns 120 cells	Local affected	Blast affected i	Run SQI	L Query Export ~
1. Mean	490k	490k	490k	13.5k	0
2 Min Modeled	23.3k	23.3k	23.3k	0	0
3 1st Percentile	61.9k	61.9k	61.8k	0	0
4 5th Percentile	118k	118k	118k	0	0
5 50th Percentile	489k	489k	489k	1.34k	0

Figure 10: Use Export dropdown to download data as a CSV file

2.5 Locations Page

The Locations page has two subtabs (Figure 11) taking users to subpages that provide information on the potential impact locations and the average number of people affected at each of those points given the range of potential asteroid sizes and properties. The Location Damage and Risk subpage also includes the likelihood that the impact occurs at a given location, along with information on the average number of people affected by individual hazard types (local or tsunami) at different potential impact locations along the swath.

Figure 11: Use subtabs to navigate through Locations subpages

2.6 Zoomable Maps Page

The Zoomable Maps page includes two zoomable maps highlighting potential regions at risk to local ground damage along the Swath and for the Worst-Case Scenario among the cases modeled. Users can navigate between the maps using the subtabs (Figure 12). Additionally, a color-coded table appears above each subpage describing the expected local blast and/or local thermal damage and criteria at each of four severity levels. It is assumed that 10% of the population is affected at the Serious severity level, 30% at the Severe level, 60% at the Critical level, and 100% at the Unsurvivable damage severity level.

Summar	ry As	teroid Properties	Damages	Affected Population	Locations	Zoomable Maps	
				HYPOTHETICAL EXER	CISE		
				Zoomable Map	S		
		Serious		Severe	C	ritical	Unsurvivable
Potential	Blast	Shattered wind some structure of	dows, damage	Widespread structure damage	Most structu	residential res collapse	Complete devastation
Enects	Thermal	2nd degree b	ourns	3rd degree burns	Clothi	ng ignition	Structure ignition
Critoria	Blast	1 psi		2 psi		4 psi	10 psi
Cinteria	Thermal	0.25 MJ/m	^2	0.42 MJ/m^2	0.84	MJ/m^2	1.20 MJ/m^2
Population Affected	ו	10%		30%		60%	100%
Swath Worst Case Scenario							
+	Accos						

Figure 12: Use subtabs to navigate through Zoomable Maps subpages. Use color-coded table as reference for expected local blast and thermal damages at different damage severity levels

Users can click on the different damage severity regions in the Worst-Case Scenario subtab to see the population in each area (Figure 13). The population number represents all people in the circular area, not just the ring, and has not yet been scaled to affected population.

Figure 13: Click in each damage severity region on the Worst Case Scenario map to see the number of people in each area. Values are for the whole circular area, not just the ring, and have not been scaled to affected population

3. Appendix: Full Dashboard Pages

Summary Asteroid Properties Damages Affected Population Locations Zoomable Maps

HYPOTHETICAL EXERCISE

Asteroid Impact Risk Summary - Assessment 2

Asteroid Characterization

• Date of Assessment: 28 April 2028

- Date of Potential Impact: 24 April 2041
- Earth Impact Probability: 100%
- Observations: Flyby space mission obtained direct measurement
 of physical size (volume, shape) and confirmed S taxonomy
- Diameter (Spherical Equivalent): Total range is [141 159] m, most likely in the [147 - 152] m interval, with a median of 150 m and mean of 150 m

• Energy: Total range is [45-158] Mt, most likely in the [63 - 105] Mt interval, with a median of 88 Mt and mean of 89 Mt

Hazards

Affected Population

HYPOTHETICAL EXERCISE

These results show a Probabilistic Asteroid Impact Risk assessment performed for the PDC25 Hypothetical Asteroid Impact Exercise, as part of the 9th IAA Planetary Defense Conference (PDC 2025). This exercise assesses a realistic but fictitious hypothetical scenario, not a real asteroid threat.

[Produced by the NASA Asteroid Threat Assessment Project (ATAP), NASA Ames Research Center]

Figure 14: Summary Page of Interactive Dashboard

Locations

Asteroid Properties

Mass

Data

Asteroid Properties Entry Parameters Modeling Parameters

Porosity

Aerodynamic Strength

Figure 15: Asteroid Properties Page of Interactive Dashboard, Asteroid Properties subtab

Asteroid Properties

Asteroid Properties Entry Parameters Modeling Parameters Data

Entry Angle

Entry Latitude

Figure 16: Asteroid Properties Page of Interactive Dashboard, Entry Parameters subtab

Figure 17: Asteroid Properties Page of Interactive Dashboard, Modeling Parameters subtab

Summary

Asteroid Properties

Damages Affected Population

Zoomable Maps

HYPOTHETICAL EXERCISE

Locations

Asteroid Properties

Asteroid Properties	Entry Parameters	Modeling Parameters	Data		
10 rows 17 column	s 170 cells			Run SQL	Query Export ~
Stat	Diameter [m]	Mass [kg]	Impact Energy	H-Magnitude [.	Albedo [-]
Stat		Mass [kg]	inipact Energy	H-Magintude [-	Albedo [-]
1. Mean	150	3.97e+09	89	21.6	0.19
2 Min Modeled	141	2.01e+09	45	20.6	0.03
3 1st Percentile	144	2.35e+09	53	20.9	0.08
4 5th Percentile	146	2.59e+09	58	21.1	0.10
5 50th Percentile	150	3.92e+09	88	21.6	0.19
6 95th Percentile	154	5.50e+09	124	22.2	0.28
7. 99th Percentile	156	6.08e+09	137	22.5	0.34
8 Max Modeled	159	7.03e+09	158	23.5	0.45
9 HPDI 68%	[147 - 152]	[2.81e+09 - 4.66	[63 - 105]	[21.2 - 21.9]	[0.13 - 0.24]
1. HPDI 99%	[144 - 157]	[2.20e+09 - 6.16	[49 - 139]	[20.9 - 22.5]	[0.07 - 0.35]

Min and Max represent the smallest and largest values modeled (5000 property samples x 5000 impact points = 25 million cases modeled), not absolute theoretical limits. HPDI stands for Highest Probability Density Interval, and HPDI 68% represents the most likely range.

HYPOTHETICAL EXERCISE

Figure 18: Asteroid Properties Page of Interactive Dashboard, Data subtab

Damages

		Serious	Severe	Critical	Unsurvivable
Potential Effects	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
	Thermal	2nd degree burns	3rd degree burns Clothing ignition		Structure ignition
Ouitouio	Blast	1 psi	2 psi	4 psi	10 psi
Criteria	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	ı	10%	30%	60%	100%

Data

Hazard Occurence

Local Damage Severity Local Damage Size

Fraction of Earth-impacting cases for which damage from each hazard type occurs

Fraction of Earth-impacting cases for which each hazard type is the primary source of population damage

A single impact event can cause multiple hazards (e.g. blast + thermal, tsunami + local near-shore, or global + local or tsunami). Sum of damage occurence probabilities (left figure) may exceed 100%.

HYPOTHETICAL EXERCISE

Figure 19: Damages Page of Interactive Dashboard, Hazard Occurrence subtab

Damages

		Serious	Severe	Critical	Unsurvivable
Potential Effects	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria T	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	ı	10%	30%	60%	100%

Hazard Occurence

0.2

0.0 | 0

25 50

Local Damage Severity

Blast Overpressure

Local Damage Size Data

Safety 🗸

Thermal Radiation

Probability that blast overpressure damage will be a given severity or better at each distance bin among Earth-impacting cases. Colors correspond to the severities in the damage key, and grey represents damage below the 1 psi threshold

5 100 125 1 Damage Radius [km]

150 175

75

Probability that thermal radiation damage will be a given severity or better at each distance bin among Earth-impacting cases. Colors correspond to the severities in the damage key, and grey represents damage below the 0.25 MJ/m^2 threshold

Note that axes are scaled to each plot and differ between hazard types

HYPOTHETICAL EXERCISE

Figure 20: Damages Page of Interactive Dashboard, Local Damage Severity subtab - Safety

200

225

Damages

		Serious	Severe	Critical	Unsurvivable
Potential Effects	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	ו	10%	30%	60%	100%

Hazard Occurence

Local Damage Severity

Blast Overpressure

Local Damage Size Data

Risk

 \sim

Thermal Radiation

Probability that blast overpressure damage will be a given severity or worse at each distance bin among Earth-impacting cases. Colors correspond to the severities in the damage key, and grey represents damage below the 1 psi threshold

Probability that thermal radiation damage will be a given severity or worse at each distance bin among Earth-impacting cases. Colors correspond to the severities in the damage key, and grey represents damage below the 0.25 MJ/m^2 threshold

Note that axes are scaled to each plot and differ between hazard types

HYPOTHETICAL EXERCISE

Figure 21: Damages Page of Interactive Dashboard, Local Damage Severity subtab – Risk

Damages

	Serious	Severe	Critical	Unsurvivable
Potential Bla	t Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
Ther	al 2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Bla	t 1 psi	2 psi	4 psi	10 psi
Ther	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	10%	30%	60%	100%

Hazard Occurence

Serious

 \sim

Local Damage Severity

Local Damage Size Data

Serious

 \sim

Earth impacting cases

Blast Overpressure

Thermal Radiation

Probability that the damage radius corresponding to 0.25 MJ/m^2 Probability that the damage radius corresponding to 1 psi blast (serious) is within a given damage radius bin among Earth-impactoverpressure (serious) is within a given damage radius bin among ing cases

Note that axes are scaled to each plot and differ between hazard types and severities

HYPOTHETICAL EXERCISE

Figure 22: Damages Page of Interactive Dashboard, Local Damage Size subtab – Serious

Damages

	Serious	Severe	Critical	Unsurvivable
Potential Bla	t Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
Ther	al 2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Bla	t 1 psi	2 psi	4 psi	10 psi
Ther	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	10%	30%	60%	100%

Hazard Occurence

Severe

 \sim

Local Damage Severity Local D

Local Damage Size Data

Severe

Thermal Radiation

 \sim

Blast Overpressure

Probability that the damage radius corresponding to 2 psi blast overpressure (severe) is within a given damage radius bin among Earth impacting cases

Probability that the damage radius corresponding to 0.42 MJ/m² (severe) is within a given damage radius bin among Earth-impacting cases

Note that axes are scaled to each plot and differ between hazard types and severities

HYPOTHETICAL EXERCISE

Figure 23: Damages Page of Interactive Dashboard, Local Damage Size subtab – Severe

Damages

		Serious	Severe	Critical	Unsurvivable
Potential	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
Ellects	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
a	Blast	1 psi	2 psi	4 psi	10 psi
Criteria	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected		10%	30%	60%	100%

Hazard Occurence

 \sim

Critical

Local Damage Severity Local D

Local Damage Size Data

Thermal Radiation

Blast Overpressure

Probability that the damage radius corresponding to 4 psi blast overpressure (critical) is within a given damage radius bin among Earth impacting cases Critical ~

Probability that the damage radius corresponding to 0.84 MJ/m² (critical) is within a given damage radius bin among Earth-impacting cases

Note that axes are scaled to each plot and differ between hazard types and severities

HYPOTHETICAL EXERCISE

Figure 24: Damages Page of Interactive Dashboard, Local Damage Size subtab - Critical

Damages

		Serious	Severe	Critical	Unsurvivable
Potential	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
Enects	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	Ì	10%	30%	60%	100%

Hazard Occurence

Local Damage Severity Local D

Local Damage Size Data

Unsurvivable

 \sim

Thermal Radiation

Unsurvivable \vee

Blast Overpressure

Probability that the damage radius corresponding to 10 psi blast overpressure (unsurvivable) is within a given damage radius bin among Earth impacting cases

0.16 14.6 % No Unsurvivable Damage: 63.8% 0.14 11.9 % 0.12 Probability 80.0 9.0 % 0.06 0.04 0.02 0.7 % 0.0 % 0.0 % 0.00 25 30 5 10 15 20 Damage Radius [km]

Probability that the damage radius corresponding to 1.20 MJ/m^2 (unsurvivable) is within a given damage radius bin among Earthimpacting cases

Note that axes are scaled to each plot and differ between hazard types and severities

HYPOTHETICAL EXERCISE

Figure 25: Damages Page of Interactive Dashboard, Local Damage Size subtab – Unsurvivable

Locations

Damages

		Serious	Severe	Critical	Unsurvivable
Potential Effects	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	ı	10%	30%	60%	100%

Hazard Occurence Local Da

Local Damage Severity Local Da

Local Damage Size Data

	10 rows 15 columns		Run SQL Query	Export 🗸			
	Stat	Serious damag	Severe damage	Critical damage	Unsurviv	able d Bla	st rad 1psi [
1.	Mean	104.5	53.7	32.3	14.1	104.	5
2	Min Modeled	54.9	35.0	19.2	0.0	54.9	
3	1st Percentile	60.5	40.0	22.2	5.4	60.5	
4	5th Percentile	72.6	42.9	23.9	9.6	72.6	
5	50th Percentile	105.9	52.7	31.0	13.8	105.	9
6	95th Percentile	126.2	69.0	44.2	18.4	126.	2
7	99th Percentile	131.5	73.8	47.9	19.7	131.	5
8	Max Modeled	141.5	78.5	51.7	20.9	141.	5
9	HPDI 68%	[97.2 - 121.1]	[43.4 - 60.3]	[23.4 - 36.6]	[12.5 - 17.	0] [97.2	2 - 121.1]
1.	HPDI 99%	[59.5 - 133.6]	[38.5 - 74.3]	[21.4 - 48.3]	[5.4 - 20.7	7] [59.	5 - 133.6]

Min and Max represent the smallest and largest values modeled (5000 property samples x 5000 impact points = 25 million cases modeled), not absolute theoretical limits. HPDI stands for Highest Probability Density Interval, and HPDI 68% represents the most likely range.

HYPOTHETICAL EXERCISE

Figure 26: Damages Page of Interactive Dashboard, Data subtab

0.050

0.025

0.000

0.2

0.4

0.6

Probabilities of different population ranges being affected

Affected People [millions]

HYPOTHETICAL EXERCISE

Affected Population

If Earth impact occurs, the chance of damage exceeding certain affected population thresholds is:

0.4

0.2

0.0 | 0.0

0.2

0.4

0.6

Likelihood of a certain number of people or more being affected

Minimum number of affected people [millions]

. 0.8

1.0

1.2

HYPOTHETICAL EXERCISE

1.2

1.0

Figure 27: Affected Population Page of Interactive Dashboard, Total subtab

0.8

Affected Population

If Earth impact occurs, the chance of damage exceeding certain affected population thresholds is:

Figure 28: Affected Population Page of Interactive Dashboard, Local subtab

Affected Population

If Earth impact occurs, the chance of damage exceeding certain affected population thresholds is:

Figure 29: Affected Population Page of Interactive Dashboard, Tsunami subtab

Locations

Affected Population

If Earth impact occurs, the chance of damage exceeding certain affected population thresholds is:

>1 person 100.0%	>1k people 100.0%	>10k people 100.0%	>100k people 96.4%	>1M people 1.38%	>10M people
10 rows 12 co	lumns 120 cells			Run S0	QL Query Export ~
Stat	Total affected p	Local affected	Blast affected I	Thermal affect	Tsunami affect
1. Mean	490k	490k	490k	13.5k	0
2 Min Modeled	23.3k	23.3k	23.3k	0	0
3 1st Percentile	61.9k	61.9k	61.8k	0	0
4 5th Percentile	118k	118k	118k	0	0
5 50th Percentile	489k	489k	489k	1.34k	0
6 95th Percentile	873k	873k	873k	71.3k	0
7. 99th Percentile	1.02M	1.02M	1.02M	107k	0
8 Max Modeled	1.31M	1.31M	1.31M	184k	0
9 HPDI 68%	[259k - 727k]	[259k - 727k]	[259k - 727k]	[0 - 8.11k]	[0 - 0]
1. HPDI 99%	[32.0k - 1.03M]	[32.0k - 1.03M]	[32.0k - 1.03M]	[0 - 107k]	[0 - 0]

Min and Max represent the smallest and largest values modeled (5000 property samples x 5000 impact points = 25 million cases modeled), not absolute theoretical limits. HPDI stands for Highest Probability Density Interval, and HPDI 68% represents the most likely range.

HYPOTHETICAL EXERCISE

Figure 30: Affected Population Page of Interactive Dashboard, Data subtab

Damages Affected Population

Locations Zoomable Maps

HYPOTHETICAL EXERCISE

Locations

Location Damage and Risk Broa

Broad Location Picture

- Earth-impacting points cross parts of Angola and the Democratic Republic of the Congo.
- Right Figure: Average affected population map and impact probabilities Map presents the average affected population (bottom colormap) for potential entry points along the swath given the range of potential asteroid sizes and properties. Bar plot presents the likelihood of impact occurring within potential impact regions (top horizontal axis)
- Left Figure: Affected population ranges within each region Plot presents averages and [5-95%] ranges of people affected by local (greater of blast overpressure and thermal radiation) or tsunami damage within latitude bins along the swath.

HYPOTHETICAL EXERCISE

Figure 31: Locations Page of Interactive Dashboard, Location Damage and Risk subtab

Locations

Location Damage and Risk Broad Location Picture

Average affected population for potential entry points along the swath given the range of potential asteroid sizes and properties

HYPOTHETICAL EXERCISE

Figure 32: Locations Page of Interactive Dashboard, Broad Location Picture subtab

Zoomable Maps

		Serious	Severe	Critical	Unsurvivable
Potential Effects	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Populatior Affected	ו	10%	30%	60%	100%

Swath Worst Case Scenario

Damage Risk Swath: Extent of regions potentially at risk for local ground damage, given ranges of potential impact locations and damage sizes. Damage severity levels serious, severe, critical, and unsurvivable shown out to the 95th percentile.

HYPOTHETICAL EXERCISE

Figure 33: Zoomable Maps Page of Interactive Dashboard, Swath subtab

Zoomable Maps

		Serious	Severe	Critical	Unsurvivable
Potential	Blast	Shattered windows, some structure damage	Widespread structure damage	Most residential structures collapse	Complete devastation
Ellects	Thermal	2nd degree burns	3rd degree burns	Clothing ignition	Structure ignition
Criteria	Blast	1 psi	2 psi	4 psi	10 psi
	Thermal	0.25 MJ/m^2	0.42 MJ/m^2	0.84 MJ/m^2	1.20 MJ/m^2
Population Affected	ı	10%	30%	60%	100%

Swath Worst Case Scenario

Worst case scenario among cases modeled in terms of total affected people

